神经调控技术是了解大脑功能与回路的重要工具。然而,基于传统电学或光遗传学的神经调控技术往往需要侵入式的永久大脑植入物,从而造成脑组织损伤并束缚实验对象的自由行为。
神经调控技术是了解大脑功能与回路的重要工具。然而,基于传统电学或光遗传学的神经调控技术往往需要侵入式的永久大脑植入物,从而造成脑组织损伤并束缚实验对象的自由行为。
尽管最新的光遗传学方法极大地延展了传统的神经调控工具,但至今未能有一个光学神经调控技术能够同时消除大脑植入物与物理束缚。
2022年3月21日,美国斯坦福大学 洪国松 课题组和新加坡南洋理工大学 浦侃裔 课题组合作,在 Nature Biomedical Engineering 期刊发表了题为: Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window 的研究论文, 报道了一种可以穿过完整头皮和头骨的近红外深脑神经调控技术。
研究团队利用近红外光在生物组织中较深的穿透深度来无损地穿透脑组织并达到目标脑区。同时,他们还设计了名为MINDS的纳米传感器来高效地将进入深脑的近红外光转化为热。由此产生的局域热效应会激发热通道蛋白TRPV1,从而选择性地调控深脑中表达TRPV1的神经元的活动。
为了验证这一技术的可行性,研究团队选择性地使位于小鼠中脑腹侧被盖区的多巴胺神经元表达TRPV1,并用Y迷宫中的条件性位置偏爱实验来测试神经调控的效果。研究者们发现,在连续三天的近红外光照的训练之后,同时接受了TRPV1转染与MINDS注射的实验组展现出很强的对近红外光照射区域的位置偏爱,而缺乏TRPV1或MINDS的对照组则没有表现出此类位置偏爱。
这些实验现象,以及在文章中的电生理与组织切片等结果,表明了这项技术可以成功地利用近红外光透过完整的头皮与头骨来激发深脑的神经元。
图:(a) 近红外神经调控技术的示意图。(b) Y-迷宫中条件性位置偏爱实验的照片。(c) 不同实验条件下小鼠的位置偏爱分布。
相较于现有的光学神经刺激方法,这篇文章中报道的近红外神经调控技术消除了侵入式的大脑植入物以及其带来的脑组织损伤和物理束缚,从而为涉及社会性行为学实验中的神经调控提供了新的可能。
论文链接:
https://www.nature.com/articles/s41551-022-00862-w
不感兴趣
看过了
取消
人点赞
人收藏
打赏
不感兴趣
看过了
取消
您已认证成功,可享专属会员优惠,买1年送3个月!
开通会员,资料、课程、直播、报告等海量内容免费看!
打赏金额
认可我就打赏我~
1元 5元 10元 20元 50元 其它打赏作者
认可我就打赏我~
扫描二维码
立即打赏给Ta吧!
温馨提示:仅支持微信支付!
已收到您的咨询诉求 我们会尽快联系您