一种基于多模态生理信号实时检测焦虑状态的技术

2022
05/06

+
分享
评论
健康信息化
A-
A+

焦虑症是全世界最普遍的精神疾病之一

焦虑是一种高度忧虑、唤醒和警惕的精神状态,通常由对威胁的预期引起。荟萃分析表明,诱发性焦虑和病理性焦虑之间存在重叠的神经生物学机制,从而可以通过诱发状态焦虑来研究焦虑的机制和干预效果。

现有的状态焦虑测量,如常用的状态焦虑量表(STAI-S),主要依赖于时间分辨率较低的主观性问卷。并且,状态焦虑不仅伴随着即时的心理反应,表现为情绪的高唤醒、低效价和低支配性等特征;同时也伴随着相应的生理反应,例如心率增加、心率变异性降低和皮肤电导水平升高。然而,目前仍然缺乏基于心理和生理反应的状态焦虑的定量表征,这限制了焦虑诱导范式中不断变化的状态焦虑水平的动态跟踪。

上海交通大学医学院附属精神卫生中心杨志教授团队近期在发表于《精神病学前沿》杂志上的一项工作中,揭示了一种具有高时间分辨率的状态焦虑跟踪模型。为了捕捉状态焦虑水平的动态变化,在实验中通过暴露于厌恶图片或电击风险来诱导被试的状态焦虑(任务前后测量STAI-S的评分),并同时记录多模态数据,包括情绪维度评分、心电和皮肤电反应。研究者基于多模态数据训练和验证了预测状态焦虑的机器学习模型。

62181651731247617

图1. 实验流程

研究者首先行为测试确认两种焦虑诱发任务均成功地诱发了状态焦虑,再通过相关分析检验心理和生理特征与 STAI-S 分数之间的关系,发现情绪维度指标VAD与STAI-S存在焦虑相应的显着的相关关系;特定的生理指标同样也与状态焦虑密切相关。接着,研究者基于多模态数据将四种不同的回归模型用于预测 STAI-S并比较了它们的预测性能。结合心理特征和生理特征时,回归模型预测的 STAI-S 和实际的 STAI-S 之间的存在显着的正相关关系。并且,单独使用生理特征时,回归模型同样也可以预测 STAI-S。

17071651731248695

图2. 多模态数据预测STAI-S

本研究提出了一种基于心理和生理的多模态数据的状态焦虑动态跟踪模型,该模型反映了个体状态焦虑在高时间分辨下的动态变化。并且,该模型仅使用客观且易于获取的生理信号便可准确测量静息状态下的状态焦虑,为未来的情感脑机交互和焦虑调节研究提供了状态焦虑水平的敏感性测量。

上海交通大学医学院附属精神卫生中心丁悦副研究员、刘静静硕士生为本工作第一作者。

Ding Y, Liu J, Zhang X, Yang Z (2022): Dynamic Tracking of State Anxiety via Multi-Modal Data and Machine Learning. Front Psychiatry 13: 757961.

备注:文中图片均已获版权方授权

不感兴趣

看过了

取消

本文由“健康号”用户上传、授权发布,以上内容(含文字、图片、视频)不代表健康界立场。“健康号”系信息发布平台,仅提供信息存储服务,如有转载、侵权等任何问题,请联系健康界(jkh@hmkx.cn)处理。
关键词:
研究者,模态,生理,信号,状态,检测,技术,焦虑,模型,预测,心理,数据,特征

人点赞

收藏

人收藏

打赏

打赏

不感兴趣

看过了

取消

我有话说

0条评论

0/500

评论字数超出限制

表情
评论

为你推荐

推荐课程


社群

  • 第九季擂台赛官方群 加入
  • 手术室精益管理联盟 加入
  • 健康界VIP专属优惠 加入
  • 健康界药学专业社群 加入
  • 医健企业伴飞计划 加入

精彩视频

您的申请提交成功

确定 取消
5秒后自动关闭

您已认证成功

您已认证成功,可享专属会员优惠,买1年送3个月!
开通会员,资料、课程、直播、报告等海量内容免费看!

忽略 去看看
×

打赏金额

认可我就打赏我~

1元 5元 10元 20元 50元 其它

打赏

打赏作者

认可我就打赏我~

×

扫描二维码

立即打赏给Ta吧!

温馨提示:仅支持微信支付!

已收到您的咨询诉求 我们会尽快联系您

添加微信客服 快速领取解决方案 您还可以去留言您想解决的问题
去留言
立即提交